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S.1 High quality Jacobian computation

In the local phase of the hybrid optimization method, the NL2SOL algorithm is
used, which requires the Jacobian of the residuals vector (R). As an alternative
to the simple forward finite difference method:

Ji(θ) ≈
R(θ + δθi)−R(θ)

||δθi||
, for i = 1, 2 . . . Nθ, (S.1.1)

where δθi is a perturbation in the i-th parameter value, the parametric sensi-
tivity based calculation produces a Jacobian of higher quality. The sensitivity
of the model output vector (y) to the parameters has to be computed:

J(θ) =
dR(θ)

dθ
=

1

σ

dy

dθ
. (S.1.2)

Note that the Jacobian J(θ) is a matrix of size ND × Nθ, where ND is the
number of data points and Nθ is the number of parameters, such that [J(θ)]ij
is the weighted sensitivity of the model prediction for the i-th data point with
respect to the j-th model parameter.

The parametric sensitivities of the model outputs can be computed from the
sensitivities of the state-variables as

dy

dθi
=

Nx∑
j=1

∂g(x, θ)

∂xi
xjθi +

∂g(x, θ)

∂θi
, for i = 1, 2 . . . Nθ, (S.1.3)

where g(·) is the observation function (see Eq. (2) in the main text) and xjθi =
dxj

dθi
denotes the sensitivity of the j-th state variable with respect to the i-th

parameter.
The sensitivities of the state-variables with respect to the model parameters

can be obtained by solving the so-called forward sensitivity equations (FSEs),
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which is a well-known method in the perturbation theory of differential equa-
tions. The FSEs read as

dxθi
dt

=
∂f(u, x, θ)

∂x
xθi +

∂f(u, x, θ)

∂θi

xθi(t0) =

{
1, if θi is initial condition

0, otherwise
.

(S.1.4)

Note that this means that Nθ × Nx equations have to be solved, so it is a
computationally expensive calculation, which increases with the number of state
variables and parameters. When the Jacobian is required, these equations are
usually solved together with the dynamic model equations, because they share

the system’s Jacobian (∂f(u,x,θ)∂x ) and thus the two systems of equations have
the same “stiffness”. Note that modern solvers like CVODES [1] implement this
type of computation.

The system’s Jacobian and the inhomogeneous part (∂f(u,x,θ)∂θi
) of (S.1.4)

can be derived analytically (symbolically) from the dynamic equations prior to
the model calibration. This procedure increases the speed and robustness of
the initial value problem (IVP) and sensitivity computations. It should also be
noted that the Jacobian computation by forward sensitivity equations requires
a similar computational effort than the finite difference (FD) method, but in the
case of the sensitivity based computation the error in the Jacobian is controlled.
However, in the case of FD method, the error is unknown.

We compared the FSE and the FD methods based on the case studies pre-
sented in the main text, confirming that the accuracy of the Jacobian has a
significant effect on the convergence of NL2SOL. A high quality Jacobian com-
putation resulted in faster convergence with better chances of obtaining the
global optima. However, we also observed that NL2SOL implements an intel-
ligent adaptive scheme to tune the perturbation parameter (δθi) for the FD
method (S.1.1); for small problems and with careful settings, it can be almost
as efficient as solving the forward sensitivity equations.

S.2 Regularization schemes

Figure S.2.1 shows a summary of the proposed regularization schemes based on
the available prior knowledge quality.

S.3 Prediction error measure

To measure the prediction error, we used the following normalized root mean
square error formula

NRMSE =

√√√√ 1

ND

Ne∑
k=1

Ny,k∑
j=1

∑Nt,k,j

i=1 (yijk − ỹijk)
2

(maxi ỹijk −mini ỹijk)2
. (S.3.5)

Here ND is the total number of data points, Ne is the number of experiments,
Ny,k is the number of observables in the k-th experiment, Nt,k,j is the num-
ber of time points in the k-th experiments for the j-th observable, yijk is the
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Figure S.2.1: Regularization scheme. Three scenarios are considered based
on the quality of the available prior information: (i) best case scenario (a good
guess of the parameter values is available in the literature) where a first order
weighted Tikhonov regularization is recommended, (ii) medium case scenario
(less reliable initial guess, but within one order of magnitude of the true values)
where non-weighted Tikhonov regularization is recommended, and (iii) worst
case scenario (no prior knowledge and therefore random guess of parameters)
where a two-step regularization procedure is proposed. In the first step ridge reg-
ularization is applied which results the parameter vector with minimum norm,
that fits the data reasonably well. In the second step this parameter vector
is used as the reference parameter vector for Tikhonov regularization. In each
scenario the regularized optimization is solved for a set of regularization param-
eter and the generalized cross validation method (GCV) is applied to choose
the optimal candidate.
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model prediction for the data ỹijk. This formula computes the root of the sum
of squared error between model prediction and data for each observable, and
normalizes it by the squared range of the data corresponding to that observable.
In this way, the observables are properly scaled.

S.4 Initial guess calculation for global optimiza-
tion

The search for the global optima of the objective function is restricted to a Nθ
dimensional box. This box is specified by the lower and upper bounds of the
parameters, i.e. θmin ≤ θ ≤ θmax. In the main text, we mention 4 strategies to
generate points (initial guesses) from this box:

1. Multivariate uniform distribution, which selects points from the box with
uniform probability.

2. Multivariate log-uniform distribution. This can be applied only for posi-
tive bounds. First, the bounds are transformed to the logarithmic space
([θmin θmax] → [log10(θmin) log10(θmax)]) and then points are selected
with equal probability in the transformed box. Finally the points are
transformed back to the original space.

3. Latin hypercube sampling (LHS) [2]

4. Logarithmic Latin hypercube sampling, which transforms the bounds as
in 2. and then applies the LHS method.

The logarithmic scaling of the bounds is especially useful if the lower and upper
bounds are different by more than an order of magnitude and we would like to
collect samples from all the range of magnitudes. With the logarithmic scaling,
each order of magnitude in the range of the parameters will have equal chance
to contain the selected points.

S.5 Robust computation of the regularization
candidates

Due to the non-convexity of the cost function, none of the stochastic global
search algorithms can guarantee that the global minimum of regularized opti-
mization problem is found. The global optimization problem is solved multiple
times with regularization to generate the candidates. We can detect inconsis-
tencies among these solutions to find cases that did not converge to the global
optima.

We can use a simple and well-known observation from bi-criteria optimiza-
tion to filter out incorrect solutions due to convergence to local optima. If the
bi-criteria optimization (here the criteria are formulated by the least squares
term QLS and the penalty Γ) is solved by weighting (here the weighting param-
eter is the regularization parameter), then the solutions are located on a convex

curve (the points of which are then (QLS(θ̂αi
),Γ(θ̂αi

)) for i = 1 . . . I). This con-
vex curve is referred as the L-curve in regularization theory (and in the main
text), but it is also known as the Pareto front in multi-objective optimization.
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For example, in case of two estimated parameter vectors θ̂α1
and θ̂α2

corre-
sponding to two regularization parameter values α1 > α2 is expected to have
the following relations: QLS(θ̂α1

) > QLS(θ̂α2
) –i.e. larger regularization leads to

worse model fit–, and ΓT (θ̂α1
) < ΓT (θ̂α2

), i.e. larger regularization gives smaller
penalty function value. If the relation is not fulfilled, then one of the solution
dominates the other and the dominated solution is not a global solution of the
corresponding optimization problem, but is the artefact of local convergence.

A straightforward strategy would be to detect and remove the dominated
points from the Pareto front obtained by independent estimations. But this
would discard valuable computational results. Instead, we applied the follow-
ing iterative search strategy. We assume that a set of regularization parameters
α1 > α2 > . . . αI are already selected for which the optimization problem (Equa-
tion (7) in the main text) has to be solved, for example using the procedure
described in the main text.

The penalty term is a quadratic, therefore convex function of the parameters,
which takes its unique (global) minimum at the reference parameter vector θref .
On the other hand, the first part of the objective function QLS(θ) can be highly
multi-modal with many local minima. Therefore, it is recommended to start
the search with the largest regularization parameter α1.

A procedure to compute a smooth L-curve.

Step 1. Global, sequential forward search. Solve the optimization problem
((7) in the main text) one-by-one for α1, α2, . . . αI using the proposed
global optimization meta-heuristic (eSS2) such that, in the i-th run the

previously obtained parameters {θ̂α1 , θ̂α2 , . . . θ̂αi−2 , θ̂αi−1} are included in
the initial guess set for the global search. This can save a large amount of
time in the global search of the next optimal point, preventing dominated
solutions.

Remark 1. Note that, as we solve a sequence of non-linear optimization problems with
a global search method, it is possible, that at some point a much better
optimum is reached; for example θ̂αk

, which reveals that, the previously

obtained points θ̂αi
for i = 1, 2, . . . k − 1 are dominated, i.e. they have

not converged to the global optima. But the reverse cannot happen, i.e.
as mentioned above θ̂αi

cannot be dominated by any of θ̂αi−1
. . . θ̂α1

since
they are used as initial guesses in the search.

Step 2. Backward search. In the second step we refine the optima one-by-one,
but in the reverse order αI−1, . . . α1. Here, only two local searches are
performed for each regularization parameter. The initial guess for these
searches are the parameters obtained in Step 1: for the optimization with
αi the initial guesses are θ̂i+1 and θ̂i.

Remark 2. Note that, the reverse order optimization with the selected initial guesses
eliminates the dominated points of the Pareto front that may appeared in
Step 1.
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S.6 Bias-variance computation

In Section 3.5 in the main text we used multiple sets of calibration data (repli-
cates) to investigate the effect of the random noise in the data to the model
prediction and parameter estimation. Calibrating the model on these multi-
ple data sets results in a set (population) of estimated parameter vectors (each
vector corresponds to a dataset). Using these estimated parameter vectors, we
obtain a population of predictions. Based on these quantities, we can then
compute the parameter estimation and prediction bias and variance using:

variance(θ̂α) = trace
(
E
[
(θ̂α − E[θ̂α])(θ̂α − E[θ̂α])T

])
(S.6.6)

variance(ŷα) = trace
(
E
[
(ŷα − E[ŷα])(ŷα − E[ŷα])T

])
(S.6.7)

bias2(θ̂α) = trace
(

(E[θ̂α]− θt)(E[θ̂α]− θt)T
)

(S.6.8)

bias2(ŷα) = trace
(
(E[ŷα]− yt)(E[ŷα]− yt)T

)
, (S.6.9)

where θ̂α is the estimated parameters with regularization parameter α, ŷα is the
model prediction based on this parameter estimate, i.e. ŷα = y(θ̂α) and yt, θt
are the true (nominal) prediction and parameter vectors, respectively. This true
values are known only for synthetic problems and used only for the bias-variance
analysis.

S.7 Settings of the optimization algorithms

Table S.7.1 shows the default settings for both the global optimization algorithm
(eSS) and the local NLS algorithm (NL2SOL). Note that these values might be
different from the default values of the algorithms, but the same values have
been used for all the case studies (i.e. they were found to be robust settings).
Interested readers can find further tuning details in eSS User’s Manual and the
NL2SOL User’s Guide [3].

Optimization runs terminate when at least one stopping criteria is reached.
The most frequently activated stopping criteria for the global optimization was
either the allowed computation time or the allowed number of objective function
evaluation. The allowed computation time and number of function evaluations
are reported for each case study in Additional File 2.
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Table S.7.1: Default optimization settings for the case studies. eSS set-
tings: ndiverse is the number of diverse solutions generated, n1 is the number
of global iteration before the local algorithm is called for the first time, n2 is
the number of global iteration between consecutive calls of the local algorithm,
local balance influences the selection of starting point among the members
of the population for initiating the local optimization, log var generates the
initial and new members of the population in the logarithmic scaled bounds
of the parameters. NL2SOL settings: maxfuneval is the maximum number
of function evaluation before the search terminates, maxiter is the maximum
iteration number before termination, tolrfun is the relative tolerance (the al-
gorithm terminates if the approximated global optima is within this tolerance
value), tolobjr is the computational accuracy of the objective function and
the Jacobian (which is tuned to the tolerance level of the ODE solver tolerance
level).

eSS settings value NL2SOL settings value

ndiverse 10 ·Nθ maxfuneval 300
n1 1 maxiter 200
n2 10 tolrfun 10−6

local balance 0.5 tolobjr 10−5

log var ones(1, Nθ)
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